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Abstract

This paper reports the results of a numerical investigation of the problem of finding the optimum configuration for five discrete heat sources,
mounted on a wall of a three-dimensional vertical duct under mixed convection heat transfer, using artificial neural networks (ANN). The objective
is to locate the positions for the five heat sources in such a way that the maximum temperature of any of the heat sources in a given configuration
is a minimum. The three-dimensional governing equations of mass, momentum and energy equations for the fluid flow and the energy equation
for the solid regime have been solved by using FLUENT 6.3 and a database of temperature versus configuration was generated. The temperature
database developed from CFD simulations is used to train the neural network. The trained neural network predicts the temperature of the heat
sources very accurately and much faster than the CFD software. With the use of this network, an exhaustive search for all possible configurations
was done that resulted in a global optimum for the problem.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Computational Fluid Dynamics (CFD) simulations are typ-
ically time consuming for complex problems and many a time
are not cost effective. Many situations in practice require a
large number of CFD computations for making engineering
judgment. The problem of placing electronic components on
a substrate is one such problem, wherein the reliability of the
components depends upon the maximum temperature during
operation. The relative positions of the components influence
the flow and consequently affect their temperatures. In gen-
eral, the selection of the best possible configuration out of
several thousand possibilities is not trivial. The solution for
each configuration can be obtained by solving simultaneously
the governing equations of continuity, momentum and energy
equations for the flow and additional energy equation for the
solid, if wall conduction is considered. In recent years, arti-
ficial neural network (ANN) has been increasingly utilized in
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science and engineering, as it has a remarkable ability of self-
learning and self-organization. A neural network can employ
previously acquired knowledge to respond to new information
rapidly and automatically. The position of the components on
board is an important area of current research in electronic cool-
ing. Da Silva et al. [1–3] addressed the problems of allocation
of in line heating elements mounted on the wall/vertical open
channels cooled by forced/free convection and showed, ana-
lytically, using constructal theory, that the heat sources must
be distributed non-uniformly in both the forced and free con-
vection regimes. Furthermore, they reported that the spacing
between the heat sources depends on the flow parameters. Dias
and Milanez [4] studied the optimization of natural convection
heat transfer for two-dimensional flush mounted heat source(s)
in a cavity using Genetic Algorithms. Liu and Phan-Thien [5]
studied the problem of optimum spacing of three heated chips
mounted on a conductive substrate in an enclosure and con-
cluded that the centre-to-centre distances between the chips
follow a geometric series with a common ratio 1.168. Chen and
Liu [6] investigated, experimentally, the problem of forced con-
vection in a parallel plate channel with nine modules mounted
on a printed circuit board and determined the optimum spacing
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Nomenclature

Awetted wetted area of the heat source . . . . . . . . . . . . . . . m2

Cp specific heat . . . . . . . . . . . . . . . . . . . . . . . . . . . J/kg K
Gr∗ modified Grashof number, gβ�Trefh

3/ν2

h height of the heat source . . . . . . . . . . . . . . . . . . . . m
h average heat transfer coefficient . . . . . . . . W/m2 K
H height of the duct . . . . . . . . . . . . . . . . . . . . . . . . . . . m
k thermal conductivity . . . . . . . . . . . . . . . . . . . W/m K
lr learning rate
Nu average Nusselt number, hS/k

p pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N/m2

Q heat transfer rate . . . . . . . . . . . . . . . . . . . . . . . . . . . W
Qgen volumetric heat generation . . . . . . . . . . . . . . W/m3

Re Reynolds number based on S, V∞S/ν

S spacing between the walls of the channel . . . . . . m
t heat source thickness . . . . . . . . . . . . . . . . . . . . . . mm
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◦C
U velocity in the X-direction . . . . . . . . . . . . . . . . . m/s
V velocity in the Y -direction or volume of the heat

source as the case may be . . . . . . . . . . . . m/s or m3

V velocity vector . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
W velocity in the Z-direction . . . . . . . . . . . . . . . . . m/s
x, y, z coordinate directions . . . . . . . . . . . . . . . . . . . . . . . . m

X,Y position coordinates of the heat sources . . . . . . . m

Greek symbols

�T (T − T∞) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◦C
�Tref reference temperature difference QgenV h/Awettedkf

α thermal diffusivity of the fluid, k/ρCp , . . . . m2/s
β isobaric cubic expansivity of the fluid . . . . . . 1/K
θ non-dimensional temperature of the heat source,

(T − T∞)/(Tmax − T∞)

μ momentum parameter in the ANN
ν kinematic viscosity of fluid . . . . . . . . . . . . . . . m2/s
ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

Subscripts

dec decrement
f fluid
h heat source
inc increment
max maximum
m mean value
ref reference
s solid
∞ ambient/inlet
ratio. Queipo et al. [7] demonstrated an adaptive search method-
ology, based on Genetic Algorithms, for the optimal configu-
ration of heated modules of different sizes in a channel under
forced convection. Rajeev Reddy and Balaji [8] used artificial
neural networks coupled with micro genetic algorithm to locate
three heat sources optimally in a ventilated cavity under forced
turbulent convection. Sablani et al. [9] used ANN to predict the
heat transfer coefficient at the surface from the measurement of
the temperature–time history inside a solid body for the two ge-
ometries, namely a cube and a semi-infinite plate. Mahmoud et
al. [10] designed three types of neural networks for predicting
flow variables in a partitioned enclosure. Thibault and Grand-
jean [11] introduced neural networks in the field of heat transfer
for data analysis. Gregory et al. [12] used artificial neural net-
works to correlate experimentally determined Colburn j -factors
and Fanning friction factors for flow of liquid water in straight
tubes with helical fins. Islamoglu and Kurt [13] developed an
ANN model to estimate Nusselt numbers for air flowing in cor-
rugated channels.

The literature review presented above shows that very few
investigations have been reported on the application of artifi-
cial neural networks in the area of fluid flow and heat transfer
problems in general. For complex three-dimensional problems,
ANN may have the potential to bring out more information on
quantities of interest like Nusselt number or maximum tem-
perature, based on a limited parametric study. Thus ANN can
serve as a “fast” forward problem in the parlance of optimiza-
tion. With the “fast” model in place, one can afford the luxury
of an exhaustive search in the determination of the optima in
certain problems. With this objective in mind, the present work
explores the possibility of using a trained network to predict
the temperatures of discrete heat sources for different configu-
rations (the position of discrete heat sources), by using a few
CFD simulations and finally arrives at the best possible config-
uration by an exhaustive search in the solution space.

2. Problem description

Three-dimensional conjugate mixed convection in a vertical
duct with a very low aspect ratio (S/W) normal to the flow
direction has been considered, with five identical finite heat
sources, each generating heat at a uniform rate, placed at arbi-
trary positions in a regular grid. The schematic of the geometry
considered for investigation is shown in Fig. 1, along with the
geometric details in the problem domain. Since the ratio of the
dimensions of the heat source and the wall in the transverse
direction is small, the flow around the heat source can signifi-
cantly influence the heat transfer characteristics. For simplicity,
25 uniformly spaced positions for the heat sources are taken at
the centre of the left wall which can be treated as a substrate as
shown in Fig. 2. The configuration shown in Fig. 2 is denoted as
54-41-43-45-32. Each position of the heat source is represented
by a number ij where i and j are the corresponding row and
column numbers, as used in conventional matrix algebra to de-
note the elements of a matrix. In each row, a heat source can be
placed in any of the 5 places. A large number of configurations
of five heat sources are possible in a 5 × 5 layout. In practice,
there could be several such components that need to be placed
in a given area on the substrate, keeping the maximum and aver-
age temperature of the components within the prescribed limits.
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Fig. 1. Physical situation considered for the position of optimization of five identical heat sources.
Fig. 2. Representation of position of heat sources on the substrate.

Table 1
Thermo physical properties of the heat source and the substrate

Material Heat source Substrate

Density (kg/m3) 2800 1162
Specific heat (J/kg K) 950 1466
Thermal conductivity (W/m K) 3.5 0.2

The thermo-physical properties of the heat source and duct are
given in Table 1.

2.1. Governing equations

The medium under consideration is air. The flow is consid-
ered to be steady, incompressible and laminar, with constant
fluid properties except for density. The density changes are
modeled with the use of the Boussinesq approximation. Ra-
diation heat transfer, viscous heat dissipation, compressibility
effects and contact resistance between the heat source and the
substrate are considered to be negligible. To account for con-
jugate convection, the energy equation is solved for the solid
domain as well. It is assumed that no temperature jump occurs
at the solid–solid interface. Based on the above assumptions,
the governing equations for mass, momentum and energy for a
steady three-dimensional flow in the fluid domain and the en-
ergy equation in the solid region are as follows.

Fluid:
Continuity equation

∇.V = 0 (1)

Momentum equation

(V.∇)V = −∇p

ρ
+ ∇2V + g(T − T∞) (2)

Energy equation

(V.∇)T = α∇2T (3)

Solid:
Energy equation

∇2T + Qgen

ks

= 0 (4)

2.2. Boundary conditions

No slip condition as given in Eq. (5) are applied to all fluid–
solid surface interfaces

U = V = W = 0 (5)

and the solid surfaces other than fluid–solid interfaces are as-
sumed to be adiabatic
∂T

∂n
= 0 (6)

At the outlet, the out flow condition which corresponds to zero
diffusion for all flow variables is imposed. Since the height to
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Fig. 3. A typical non-uniform structured grid used in the present study.

spacing of the channel is high, the error associated with this
boundary condition is small.

At the inlet the flow is one-dimensional, with a uniform
velocity of V∞ and a uniform temperature of T∞ and this trans-
lates to the following boundary conditions.

U = W = 0 (7)

V = V∞ (8)

T = T∞ (9)

2.3. Grid independence study

A non-uniform and structured grid is considered for solving
the problems under investigation. A fine mesh is generated us-
ing GAMBIT 2.2 around the solid chip surface with a minimum
cell size of 10 µm and with a successive ratio of 1.1 and 1.2 in
the span-wise and transverse directions, respectively. The de-
tails of the grid dependence test for a typical case are given in
Table 2. Since the present study considers five heat sources of
different configurations, a common grid pattern shown in Fig. 3
has been made use of. This common grid pattern saves a lot
of time in meshing for different configurations on one hand,
while on the other it increases the computational time where
fewer nodes would suffice for some configurations. Even so, it
is observed that the overall time for both meshing and com-
putations is greatly reduced by the use of this strategy. The
maximum difference in the temperature between a grid pattern
with 0.5 million nodes and that with 1.44 million nodes is found
to be less than 1 ◦C and all subsequent calculations have been
done with the grid having 0.5 million nodes.

2.4. Numerical scheme

Eqs. (1)–(4) together with the boundary conditions shown in
Eqs. (5)–(9) form a set of coupled non-linear partial differen-
tial equations and have been solved using FLUENT 6.3. The
numerical scheme adopted is a segregated solver with implicit
Fig. 4. Parity plot showing the Nusselt number estimated by the experiments
(Alex et al. [14]) and the present numerical simulations.

formulation. The pressure and velocity equations are linked by
the SIMPLE algorithm. A residual of 10−6 for the equations
of continuity, and momentum and 1 × 10−12 for the energy
equation have been employed as the convergence criteria. The
overall energy and mass balance were found to be observed
within 0.05% upon convergence. Since the present study fo-
cuses on geometric optimization, all calculations were done for
Re = 490 and Gr∗ = 2.4 × 104.

2.5. Validation of the numerical scheme

The present numerical scheme is validated with the experi-
mental data of Alex et al. [14] for a single heat source mounted
on one of the walls of a channel. The study covered both nat-
ural convection and forced convection regimes over a wide
range of Grashof numbers (4 × 104 � Gr � 12 × 104) and
Reynolds numbers (0 � Re � 1250) respectively in the laminar
regime. The experiments were conducted with various sizes of
the heated modules, for different values of the channel spacing.
Different surface coatings were also used to study the effect of
radiation properties on heat transfer. The correlation proposed
in [14] for the Nusselt number for channel flow with a heated
module is used to validate the numerical simulations. The phys-
ical dimensions of the geometry considered in the numerical
simulations correspond to those used by the Alex et al. [14].
Fig. 4 shows a parity plot that highlights the agreement between
results of the numerical simulations and the experiments. The
maximum deviation between the numerical simulations and the
experiments is about 14%.

3. Artificial neural networks

Neural networks use a set of processing elements loosely
analogous to neurons in the brain (hence the name, neural net-
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Table 2
Results of the grid independence test for Re = 490, Gr∗ = 2.4 × 104

Number of nodes Temperature (◦C) Maximum percentage deviation with
respect to the previous gridT1 T2 T3 T4 T5

249984 88.5 88.2 88.5 88.9 88.9 –
513024 100.0 99.7 100.0 100.4 100.4 13

1441188 99.4 98.9 99.4 100.1 100.1 0.8
Fig. 5. A basic neuron structure.

Fig. 6. Schematic of the neural network architecture employed for this study.

works). These nodes are interconnected in a network that can
then identify patterns in data as they get exposed to the data.
In a sense, the network learns from experience just as we do.
This distinguishes neural networks from traditional computing
programs that simply follow instructions in a fixed sequential
order. One of the most important features of a neural network
is its flexibility and ability to learn complicated relationships
based on the data. Fig. 5 shows the basic structure of a neu-
ron which performs a non-linear transformation of the weighted
sum of the inputs to produce an output. A neural network con-
sists of one input layer; one or more hidden layer(s) and one
output layer with a large number of inter connected neurons.
For the present investigation, a back propagation feed forward
neural network or multi layer perceptron (MLP) shown in Fig. 6
has been considered. Back propagation is the most widely used
learning process in neural networks today.
The Levenberg–Marquardt back propagation algorithm that
represents a simplified version of Newton’s method is ap-
plied as the training algorithm in this study. Newton’s method
is a well-established numerical optimization technique with a
quadratic rate of convergence. As the input and output data are
normalized between 0 and 1, the log sigmoid function is used
as the activation function for all the hidden layer neurons and
the output layer. Since there are ten inputs, i.e. two coordinates
(Xi, Yi) for each position of the heat source to the neural net-
work, the network has ten neurons in the input layer and five
neurons in the output layer with each neuron corresponding to
the temperature (θi) of respective heat source. There are no es-
tablished methods to determine the number of hidden layers or
the neurons in each hidden layer, and so they have been de-
termined in this study by an iterative procedure. When there
are too few neurons in the hidden layer, the performance of the
network is not satisfactory. However, if there are too many, con-
vergence is very slow and may even be compromised by local
minima. The optimal number of hidden neurons is determined
empirically, as the minimal number of neurons for which the
prediction performance is sufficient without leading to over fit-
ting or an unreasonably long computational time. The use of the
mean squared error (MSE) is an excellent criterion for evaluat-
ing the performance of the neural network. The back propaga-
tion algorithm uses iterative steepest descent gradient algorithm
to minimize the mean squared error by adjusting the weights
suitably. Several neural networks with different architectures
were tried to finally arrive at a three layer network (including
the input layer) with 10 neurons in the hidden layer. A few of the
several network architectures with their maximum performance
(correlation coefficient R2 is above 0.9) are given in Table 3,
which were obtained after repeated initializations of each of the
network configurations. The performance parameters used in
the present network are given in Table 4. The optimum perfor-
mance parameters for the network are obtained iteratively by
changing the number of neurons in the hidden layer or allowing
a change in the parameters like momentum rate, learning rate
as shown in Table 4. The learning rate (lr) parameter specifies
the magnitude of the update step for the weights in the negative
gradient direction. If the learning rate is too small, the learning
algorithm will modify the weights sluggishly and a relatively
large number of iterations will be required for convergence. Too
large learning rate leads to a possible divergence. The momen-
tum parameter tends to aid the convergence. In order to decide
the architecture of the neural network, a code was written in
MATLAB 7.0. For a fuller discussion on the back propagation
feed forward algorithm and different performance parameters
used in the training phase of the network see [15].
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Table 3
Performance of the different network architectures

S. no Number of neurons
in the hidden layer 1

Number of neurons
in the hidden layer 2

R2-value (correlation coefficient)

Training Testing

1 6 0 0.9943 0.9471
2 8 0 0.9939 0.9179
3 10 0 0.997 0.9926
4 12 0 0.9988 0.9471
5 14 40 0.9935 0.8435
6 16 30 0.9935 0.9219
7 18 26 0.9969 0.7948
8 20 34 0.9987 0.8298
Table 4
Performance parameters used for the learning process considered in the present
study

Parameters Value

Performance function (MRE) 10−6

Momentum reduction 1
Minimum gradient 10−10

µ, µ_dec, µ_inc, µ_max 0.002, 0.02, 10, 1010

Learning rate 1.54

Fig. 7. Velocity contours in the span-wise direction at the mid-plane of the heat
sources, (case (a)) heat sources arranged in a column, (case (b)) heat sources
arranged in a row.

4. Results and discussion

In vertical ducts, the effect of buoyancy on the flow and heat
transfer is expected to be significant, particularly in the lam-
inar regime. Buoyancy induced by heating the fluid enhances
the fluid motion thereby enhancing the heat transfer rate. The
laminar flow field in the span-wise (x-direction) direction at the
mid-plane of the heat sources is shown in Fig. 7(a), for the ar-
rangement where the five heat sources are placed back to back
in a column which is referred to as case (a) and in Fig. 7(b), for
the arrangement where the five heat sources are placed side by
side in a row which is referred to as case (b). From these figures,
it can be seen that the flow changes from a uniform profile at the
inlet to fully developed condition as it approaches the first heat
source itself. The flow then gets diverted by the first heat source
as it is projected on to the main flow. The flow proceeds down-
stream without much disturbance due to the other heat sources.
This is due to the main flow plus the secondary flow that be-
gins from the bottom and top surface of every heat source by
natural convection. It can be seen further from Fig. 7, that the
flow again becomes fully developed, i.e. the velocity variation
in the span-wise direction is unaffected, as the flow approaches
the exit. The maximum velocity for case (b) (2.6 m/s) is higher
that for case (a) (2.4 m/s), suggestive of increased cooling in
case (b).

The isotherms in the span-wise and transverse directions
at the mid planes of the heat sources for both the cases dis-
cussed are shown in Fig. 8 (a) and (b). For case (a), the tem-
peratures of the fluid and the heat sources increase in the
direction of main flow and reach a maximum near the last
heat source. The maximum temperature of the heat sources
is more or less uniform in the case of five heat sources ar-
ranged in a row (case (b)), as there is little lateral thermal
interaction among the heat sources. The temperatures also ap-
proach the ambient rather sharply, as one moves away from
the heat sources in both the span-wise and transverse direc-
tions. The temperature distribution within the heat source is not
uniform and the size of the hot spot and its location change
with the position of the heat source. The area weighted aver-
age maximum temperatures of both these configurations are
165 ◦C and about 90 ◦C, respectively. Hence, the location of
heat sources has a profound effect on the maximum tem-
peratures and the problem becomes a fit case for optimiza-
tion.

One of the major objectives of the present study is to explore
the use of artificial neural networks to avoid the time consum-
ing CFD simulations. A total of 127 CFD simulations were first
carried out for predicting the temperature of the heat sources.
These configurations were carefully chosen such that the min-
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(a)

(b)

Fig. 8. Isotherms in the transverse directions in the respective mid-planes of
the heat sources, (case (a)) heat sources arranged in a column, (case (b)) heat
sources arranged in a row.

imum and the maximum of both X and Y coordinates were
covered. Keeping this in mind, the configurations are chosen
at random in the problem domain for the preparation of the data
base for the purpose of training and testing the neural network.
The ANN used 80% of the data base for its training and the re-
maining 20% of the data used for testing. The performance of
the trained network is shown in Fig. 9, where the agreement be-
tween the data produced by the network and the data obtained
from the numerical simulations can be clearly seen.

Fig. 10 presents a comparison of temperatures of the heat
sources predicted by the neural network and temperatures di-
Fig. 9. Parity plot showing agreement between non-dimensional temperature
(CFD simulations) and non-dimensional temperature (ANN).

Fig. 10. Parity showing agreement between non-dimensional temperature
(CFD) and non-dimensional temperature (ANN).

rectly available from the numerical simulations for cases where
the data from “full” CFD solutions were not used to train the
network. From the figure, it is seen that there is a good agree-
ment between the temperatures predicted by the neural network
and the actual values. The maximum temperature plays a very
important role in the selection of the best configuration for the
heat sources and it is imperative that the neural network predict
these temperatures accurately. Fig. 11 shows the different con-
figurations of the heat sources whose temperature data is fed to
the trained network, the corresponding output is converted into
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Fig. 11. Diagram showing the position of heat sources used for predicting the temperatures by the trained network.
the absolute temperatures and compared with the temperatures
from CFD simulations. Table 5 presents the maximum temper-
atures predicted by ANN and CFD and their difference. From
Table 5, it is seen that the maximum relative error is within
±5%.

Finally, the trained network is used to predict the tempera-
ture of five heat sources for all possible distinct configurations.
The number of distinct configurations is 25C5. The maximum
temperatures in these cases are sorted in the descending order
of their magnitude and are plotted along with their average tem-
peratures, as shown in Fig. 12. The “best” configuration is the
one that has the lowest maximum temperature and a relatively
small temperature difference among five heat sources. The tem-
peratures of the heat sources of the best configuration predicted
by the ANN and the corresponding temperatures obtained from
the numerical simulations are given along with the best config-
uration in Fig. 13. Many configurations are observed to have
maximum temperatures that are very close to the temperatures
encountered in the best configuration. These configurations can
be treated as near optimum configurations, which are not easily
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Table 5
Comparison of maximum temperatures predicted by ANN with CFD

S. No Position of
heat sources

Maximum temperature (◦C) % error

ANN CFD

1 41-22-13-33-45 112.5 112.7 0.12
2 21-12-33-15-25 118.6 121.3 2.17
3 51-12-52-23-34 106.6 105.9 0.75
4 51-12-43-53-34 122.2 121.4 0.65
5 31-12-23-14-35 93.5 93.4 0.10
6 51-42-33-24-15 94.0 93.4 0.56
7 11-41-22-42-33 112.0 112.0 0.02
9 11-41-22-42-44 112.6 111.5 1.00

10 11-41-22-42-34 113.1 111.6 1.29
11 11-41-22-42-34 108.1 108.3 0.16
12 31-12-42-25-35 120.6 121.3 0.55
13 11-41-13-23-45 121.6 121.4 0.12
14 11-21-22-23-33 125.9 120.0 4.91
15 11-21-12-13-23 123.6 120.0 2.99
16 31-32-42-13-45 121.1 120.9 0.17
17 11-12-22-23-33 122.2 121.1 0.90
28 31-41-32-42-14 120.4 121.1 0.56
19 11-32-23-14-34 112.0 111.3 0.62
20 41-42-13-33-24 111.6 112.2 0.51
21 51-12-33-53-54 113.1 110.9 1.94
21 11-21-31-53-24 136.0 139.1 2.21
22 41-12-42-23-53 111.0 108.8 1.99
23 11-22-42-13-45 113.0 114.6 1.42
24 11-31-32-42-23 122.1 121.8 0.30
25 21-13-25-45-55 140.2 136.3 2.88
26 11-22-32-42-15 133.8 139.5 4.04
27 21-12-23-34-15 93.1 93.4 0.39
28 11-41-23-43-44 113.1 110.9 1.98
29 31-41-13-33-45 127.7 121.1 5.46
30 11-42-13-44-45 93.2 93.8 0.59

Fig. 12. Maximum and average temperatures of heat sources of all possible
configurations.

determined by other search methods. The near optimum con-
figurations are shown in Fig. 14, along with their maximum
temperatures.

From Fig. 14, it can be observed that those configurations,
in which the heat sources are placed one in each column re-
gardless of the row number, have maximum temperatures very
Fig. 13. Best possible position predicted by ANN.

Fig. 14. Near optimum configurations predicted by ANN.

close to the temperature of the best configuration. This is be-
cause of low thermal interaction in the lateral direction as there
is sufficient gap between the adjacent heat sources. However,
the temperature of the heat source located down stream of the
flow is slightly above the temperature of the heat source located
in the upstream side due the growth in the boundary layer. In
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configurations where one or more heat sources are placed back
to back in a particular column, regardless of the row number
the temperature of the heat source on the down stream side is
strongly affected by the heat source placed upstream because
of the effect of the boundary layer growth. The worst configu-
ration is one in which all five heat sources are placed in a single
column.

Thus, by the use of ANN we are not only in a position to cap-
ture the complex physics in the problem, but are able to perform
an exhaustive search, considered either as a luxury or impossi-
bility in many multi-parameter problems. As the total number
of combinations was fixed in the present study, an exhaustive
search was possible and eventually the optimal configuration
was determined. Hence by the use of ANN, one is in a position
to have a “fast” model that holds the key to optimization. Even
in those problems, where an exhaustive search is prohibitively
expensive, ANN can be used to drive a data driven optimization
technique like Genetic Algorithms or Bayesian inference. Such
a hybrid approach opens up new vistas in optimization involv-
ing complex fluid flow and heat transfer.

5. Conclusions

For three-dimensional laminar mixed convection in a verti-
cal duct, with 5 discrete heat sources on one of the walls, lim-
ited “full” CFD solutions were used to train an artificial neural
network (ANN) to predict the maximum temperature of the dis-
crete heat sources. The trained neural network was tested with
data that were not used for the training and the by ANN predic-
tions agree reasonably well with the data obtained by numerical
simulations. A few numerical simulations (less than 1%) were
used in the training and testing phases of neural network for the
present analysis to predict the temperatures of the heat sources
of all possible configurations. Based on an exhaustive search,
the best configuration was determined from amongst the candi-
date configurations for the lowest maximum temperature. For
this problem, it is seen that there are several “near” optimal
solutions. An attempt has thus been made to establish the fea-
sibility of using ANN for obtaining an optimal system in multi
parameter problems involving both fluid flow and heat transfer,
where the functional relationship is exceedingly complex or not
known.
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